1 Viewing Breastfeeding Beyond a Single Generation: The Potential Epigenetic Impact of Breastfeeding on Long **Term Health** By Laurel Wilson, IBCLC, CLE, CCCE, CLD Author of The Greatest Pregnancy Ever and The Attachment Pregnancy 2 Why am I interested in epigenetics? 3 It's About History and Herstory 4 What is epigenetics? **7**Study of how our environment, internal and external influences genetic expression. **⊅**Genome=DNA **オ**Epigenome=Phenotype **5** What is epigenetics? 6 How does epigenetics work? 7 How does epigenetics work? → Genome – Traditional Biology 8 B How does epigenetics work? **7**Genetic Activity 9 How does epigenetics work? **⊅**Epigenome **オ**Translator Methylation **7**Histones **7**mRNA 10 How does epigenetics work? **7**DNA → Methylation Approximately 30 million CpG Nucleotides that exist in an unmethelated or methylated state 11 How does epigenetics work? **7**Histones Methylated or Acetylated **7** Tails are acetylated easy access to genes

- When deacelylated, they are highly charged and access to gene is difficult
- **⊅**mRNA

Messenger between DNA and Proteins that express genes through down regulation or translation

12 How does Epigenetics Work?

オImprinting

- 13 How does Epigenetics Work?
 - ◄ Imprinting
- 14 How does epigenetics work?
- 15 Nutrigenomics
 - Nutrients can directly or via hormonal activity influence the expression of genes
 - **A**n entire new field now called nutrigenomics
 - **Nutrition changes gene expresssion (nutritional epigenetics**
 - Metabolic processes of nutrients may vary and affect the state of health depending on the individual geneotype (nutrigenetics)
 - **7**What is the most important first food?

16 How does Epigenetics Work?

- **オ**Why is this happening?
 - ■Both male and female are in metabolic tug of war
 - Male very large, very strong progeny that will survive in competitive environment
 - Female small less energy "needy" progeny that won't drain her of resources
 - Many epigenetic effects during pregnancy and first years of life have to do with metabolism and growth (which is why we see impacts on metabolic disease – diabetes, obesity, etc.)

17 Breastmilk and the microbiome

Breastmilk provides a stable microbiome in the human gut
Microbes ferment dietary proteins and polysaccarides
This fermentation process can change the methyl groups

available for translation of DNA

- These methyl groups can affect methylation and histone modification
- Non-species specific milk creates a completely different microbiome on the human gut than breastmilk

18 Breastmilk and the microbiome

- Breastfed infant has high levels of bifidobacterium which promotes positive digestion
- Formula fed infant have higher levels of E coli, streptoccoci, clostridia and bacterioides
- ➔ Formula fed infants also have completely different pH. Changes pH (5.9-7.3 allows putrefactive bacteria)
- These change the fermentation process and methyl groups available to body

19 Breastmilk and the microbiome

- To have optimal digestion and immune support from the food a baby takes in the following is required:
 - Amino acids cystein and methionine

⊅Uptake of selenium

- Breastmilk (not formula) is rich in sulfur containing amino acids
- Plasma cystein levels are much higher in breastfed infants than formula fed

20 Breastfeeding and the Phenotype

21 How does epigenetics work?

⊅Epigenome

Can be inherited

- The memory of the environment experienced is passed down
- Has been demonstrated in animal research up to 5 generations out
- Human research has found specific influence up to three generations – HongerWinter 1944, Swedish 1890's (Kaati)
- 22 Why does it work?
 - **7**We are constantly adapting for optimal survival.
 - **7**The fetus is preparing for optimal survival outside the womb.
 - **7**The newborn is managing its new environment and adjusting

- -

to cues.

 23 Breastfeeding and Epigenetics During pregnancy and early postpartum life babies are programmed nutritionally to adapt to their environment. Abundant resources, immune support, healthy food Limited resources, immune challenge, poor nutrition 24 How does epigenetics work? You are what you eat? You are what your mother and grandmother ate.
Diet of grandparents linked to longevity and disease variants in offspring for many generations
オ What is the impact of breastmilk?
■ The act of breastfeeding?
25 Clear evidence that prenatal and early postpartum
environment influences the child lifelong.
 ²⁶ How does epigenetics work? 7"Nutritional status can influence epigenetic profiles by
inhibiting enzymes that catalyze DNA methylation or histone
modifications or by influencing dietary availability of
substrates necessary for these enzymatic processes."
Thayer, 2011
27 Epigenetic Animal Studies
What we are fed
オAgouti mice (Jirtle, 2000)
 ²⁸ Breastmilk's Epigenetic Influence Necrotizing Enterocolitis – gut microbiotica programming by
suppressing the pathway involved in proinflammatory cytokine genes
Infectious Diseases and Disorders of Immune System
expression of proinflammatory cytokine genes Obesity – programming gut microbiotica and promoting
oligosaccharides
29 🔲 Breastmilk's Epigenetic Influence

- -

30 Studies in Review

- 1 Obermann-Borst et al. Duration of breastfeeding and gender are associated with methylation of the LEPTIN gene in very young children.
- 2 Ozkan et al.: Milk kinship hypothesis in light of epigenetic knowledge. Clinical Epigenetics 2012, 4-14.
- 3 Kosaka et al.: microRNA as a new immune-regulatory agent in breast milk. Silence, 2010,1:7.
- 4 Melnick, BC.: Milk: an exosomal microRNA transmitter promoting thymic regulatory T cell maturation preventing the development of atopy?

31 🔲 1 Duration of Breastfeeding and LEP

- "Duration of breastfeeding and gender are associated with methylation of the LEPTIN gene in very young children." Obermann-Borst et al.
- **DNA** methylation of LEP, a non-imprinted gene
- **Responsible for appetite regulation and fat metabolism**
- 32 🔲 1 Duration of Breastfeeding and LEP
 - Maternal Education, Breastfeeding Duration, Constitutional Factors at 17 mo. old
 - Measured DNA methylation of LEP in whole blood and also serum leptin
- 33 🔲 1 Duration of Breastfeeding and LEP

才Findings

No assoc. maternal education and duration of bf
 Breastfeeding at least 1-3 had higher serum concentrations of leptin (low methylation)

72.8 vs. 2.6 mmol/l; P=0.0257 Boys overall had lower methylation

34 🔲 2 Milk Kinship and Epigenetics

- Ozkan et al.: Milk kinship hypothesis in light of epigenetic knowledge. Clinical Epigenetics 2012, 4-14.
- ↗Does wet nursing or milk sharing cause consanguinity?

35 2 Milk Kinship and Epigenetics

>Wet nursing or milkshare and milk kinship

- **オ**Why is this a possibility?
 - - Tiny endosome-derived membrane vesicles (approximately 30 to 100 nm in diameter) that are released into the extracellular environment
 - ■Genetic material such as microRNA
 - **オ**Stem Cells
 - Organic substances affecting epigenetic regulation mechanisms

36 2 Milk Kinship and Epigenetics

37 🔲 3 miRNA in Breastmilk

- MicroRNA in Breastmilk
- Kosaka et al.: "microRNA as a new immune-regulatory agent in breast milk." Silence, 2010,1:7.
- High levels of miRNA in breastmilk in first six months of lactation
- Suggest that humans can transfer genetic material other than sexual reproduction
- 38 🔲 3 miRNA in Breastmilk
- 39 🔲 3 miRNA in Breastmilk

- ■Period of Influence is Strongest Before age of 2
 - Inadequacy of immune system to reject genetic material
 - ◄ Increased plasticity
 - Increased vulnerability of epigenome during developmental period
 - Approximately 1.3 × 10⁷ copies/liter/day of miR-181a are received by a breastfed infant.

40 🔲 4mRNA in Breastmilk

- Melnik, 2014 Milk: an exosomal microRNA transmitter promoting thymic regulatory T cell maturation preventing the development of atopy?
- Boiling of milk abolishes milk's exosomal miR-mediated bioactivity (mRNA 155)
- Formula therefore cannot protect against development of atopic disease
- Formula is deficient in bioactive exosomal miRs promoting thymic regulatory T cell maturation
- Another example of breastmilk promoting positive epigenetic regulation

41 🔲 Questions to Ponder

- Very clear data that stress has epigenetic impact, and is multigenerational.
- Very clear evidence that social standing and hierarchy has very clear impact on health gradient.
- Very clear evidence that in western societies, low income, higher stressed mothers have shorter duration of breastfeeding?
- What epigenetic influence is this cumulative effect having on babies and their future offspring?

42 🔲 Thank You

7Questions:

↗info@motherjourney.com

- 承www.motherjourney.com
- www.theattachmentpregnancy.com